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Boundary effects in Stokes flow 

By W. E. WILLIAMS 
Department of Applied Mathematics, The University of Liverpoolt 

(Received 22 March 1965) 

An integral-equation approach is used to calculate the first-order effect of the 
proximity of a boundary on the Stokes resistance of a body. It is shown that 
this approach gives both a simple derivation of the modified Stokes resistance 
and a method of investigating the accuracy of the final result. The problem of 
two settling particles is also considered briefly. 

1. Introduction 
In two recent papers Brenner (1962, 1964) has obtained general formulae 

for the effect of the proximity of a boundary on the Stokes resistance of an 
arbitrary body. Brenner’s formulae are valid for small values of a parameter cI1 
(c = characteristic body dimension, 1 = minimum distance between a point 
on the body and a point on the boundary) and were derived by the ‘method 
of reflexions’ used by Brenner & Happel (1958) in earlier work on similar prob- 
lems. 

In  the first of the two papers cited above, the problem considered is that of a 
body moving parallel to one of its principal axes of resistance, and it is deduced 
that the force P on the body is given by 

F/Fm = (1 - kFm/6~~UZ)-’, 

where F, is the corresponding force in an unbounded medium, ,u is the viscosity, 
U is the body velocity and k is a constant independent of the particular form of the 
body. The advantage of the above result is that if k can be determined by direct 
calculation of P for one particular body then this value of k may then be used 
to give F for any other body, provided that the force in an unbounded fluid is 
known. Brenner’s derivation indicates that the error in the above formula is 
O(c2/Z2) but he suggests that it is in fact O(c3/Z3). He offers no proof of this, though 
all known solutions exhibit this type of behaviour. 

Similar formulae to the above have recently been derived by the author 
(Williams 1964) for the effects of a boundary on the capacity of a conductor. In  
this type of problem it was found that an integral-equation approach gave a 
simple method of calculating the capacity and it was possible to estimate the 
error very accurately. It would therefore be of interest to investigate whether 
an integral-equation method would be useful for determining the accuracy of 
the above (and related) formulae. The general integral formulation of Stokes 
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flow problems is rather more complicated than that of electrostatic problems 
but can be carried out completely by using formulae derived by Lorentz (cf. 
Oseen 1927). The object of the present paper is to present this approach to the 
calculation of boundary effects and to the estimation of the errors made in the 
final formulae. 

The general problem reduces to that of solving a set of integral equations, 
and it is shown that the approximate solution of these equations can be carried 
out completely provided the solution for the Stokes flow problem in an unbounded 
medium is known. The necessary calculations are fairly simple and the results 
obtained by Brenner in his two papers are derived in an elementary fashion. 
Furthermore, i t  is shown that, if certain symmetry restrictions are imposed, 
Brenner’s formulae are correct to 0(c3/13). The problem of two arbitrary particles 
settling in a force field is very briefly examined and the first-order effect of 
particle proximity on settling velocity is obtained. 

2. Derivation of integral representations 

p satisfy the equations 

where ,u is the viscosity. Integral expressions for the solution of equations (1) 
which are analogous to Green’s formulae in potential theory were first derived 
by Lorentz (cf. Oseen 1927), and in order to present his formulae it is necessary to 
define certain tensor functions which are the appropriate generalizations of the 
Green’s function of potential theory. 

The tensor TJr, ro), where r and ro are the position vectors of two arbitrary 
points P and Po respectively, is defined by 

In the Stokes flow of an incompressible fluid the fluid velocity q and the pressure 

p V 2 q  = gradp, divq = 0, (1) 

T, = UV21r-rol -gradgradIr-r,l, (2) 

where U is the unit tensor, and the vector p1 is defined by 

pI = -pgradV21r-r,(. 
It is easily established that 

pV2T, -gradp, = -8npUS(r-r,), divT, = 0, (3) 

and it follows from equation (3) that i.T,, where i is an arbitrary unit vector, 
is the velocity a t  P due to a point force acting parallel to i at Po. (Note that 
i . p1 is the pressure p a t  P.) In  the region enclosed by any given closed surface 
S,  we now define a second tensor T and a corresponding vector p so that they 
satisfy equation (3), with the additional condition that T = 0 on S,. If both 
P and Po are within S, then i . T may be interpreted as the velocity at P in the 
region enclosed by the rigid surface S, when a point force parallel to i is acting 
at Po. Clearly T and p may be written as T, + T, and p1 + p,, respectively, where 
T,, p, satisfy equations (3) with the right-hand side of the first equation set 
equal to zero. It will be assumed for the present that T, may be determined 
explicitly for any particular surface S,. The boundary-value problem is a well- 
defined one, but the actual determination of T, for any given surface s, is rather 
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complicated and the only case for which T, has been completely determined is 
when X, is an infinite plane (Oseen 1927). 

It is now possible to write down, from Lorentz’s work, an expression for q(P), 
the solution of equations (1) a t  any point P in the region between two closed 
surfaces 8, and S, with S,  completely enclosed in S,, such that q vanishes on 8,. 
The appropriate result is 

q(P) = -L/ 8nP s, ( (p2-pn) .T-q.(pg-np))dX, (4) 

where Po is now a variable point on S,  and n denotes the outward normal to X,. 
For the case when S, recedes to infinity T and p in equation (4) will be replaced 
by T, and p,, respectively. Furthermore, it follows from Green’s theorems and 
equations (3) that, if q is constant on S,, equation (4) reduces to 

q(P) = --I 1 f.TdS, 
8nP s, 

( 5 )  

where f = p(aq/an) -pn. 
The above formulae may be applied immediately to the problem of the fluid 

motion generated by the rigid body S, moving with uniform velocity V in 
viscous fluid in the region bounded by the rigid surface 8,. Clearly the fluid 
velocity will be given by equation (5) and it also follows from the definition of the 
stress tensor that the force F on the body is given by 

F = /slfdX. 

The force F, which X, would experience in an unbounded medium may be 
expressed in terms of the Stokes resistance tensor cp, defined by Brenner (1963) 
as F, = - 6npcV. +,, where c is a characteristic dimension of 8,. It is also con- 
venient at this stage to define a parameter e as the ratio of c to the minimum dis- 
tance between a point of 8, and a point of S,. If the origin 0 is taken to be some 
point of 8, and if P and Po are also both on S,, then it follows that, neglecting 

where Ti = T,(O, 0) and the affix zero implies differentiation with respect to the 
components of r,,. 

The boundary-value problem for flow past X, thus reduces to the solution of 
the set of integral equations 

1 P  

v = - l  J f .  (T,+T,)dX, P and Po both on X,. 
8TP s1 

It follows that, if T, in equation (8) is replaced by TO, [i.e. neglecting the con- 
tributions of the second and third terms on the right-hand side of equation (7) 
which are of O(sZ)], then 
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Equation (9) is the integral equation for Stokes flow when S, is moving in un- 
bounded fluid with the constant velocity V + (l/Sr,u) F. Ti. It follows from 
equation (9) that 

F = - 6 n p ~  V+---F.Ti .+,, (10) 
l )  i 8 v  

and the solution of equation (10) is 

F = - 6npcV. [+:I + 2cT;I-l. (11) 

Equation (11) is the basic result derived by Brenner (1964) using a more 
elaborate approach. It follows immediately from equation (10) that, if F on the 
right-hand side is replaced by F,, 

the error in equation (12) being 0 ( e 2 ) .  
The above equations may be simplified further if V is parallel to one of the 

principal axes of resistance of S,; these axes being defined so that, in motion 
through an unbounded fluid parallel to one of them, the force is in the direction 
of motion. In this case equation (10) now becomes 

P/F, = I/ (  1 -A&), (13) 

where h is independent of the form of S,, and equation (13) may be identified 
with a result obtained by Brenner (1962). For the case when S,  is moving parallel 
to a principal axis of resistance it follows that equation (12) becomes 

F/Pffi = 1 +A& (14) 

AF, is of O(e) and hence, neglecting terms of O(s2),  equations (13) and (14) 
are identical, as are equations (1 1) and (12). Thus in general there is no merit in 
using equations (11) or (13) rather than the simpler equations (12) and (14). 
If, however, equation (10) is correct [neglecting terms of O(e3)] then equations 
(11) and (13), which are exact solutions of equation (lo),  will also be accurate to 
this order. In  fact in his derivation of equation (13) Brenner (1962) states that 
‘arguments too lengthy to give here suggest that the error does not exceed 

We shall now investigate some of the simpler situations in which the error 
o(63y. 

term in equation (10) is O(e3).  This will clearly be the situation if 

Is:. [r . [grad T21r=ro=o + ro . [grado T21,=,o=ol = 0, (15) 

where fm is the solution for f for the Stokes flow past S, in unbounded fluid. 
The simplest situation for which equation (15) holds is when 8, is such that there 
exists a point 0 on S, through which may be drawn three perpendicular axes 
of symmetry of 8,. It then follows from the definition of S, and elementary 
symmetry considerations that T: is a diagonal tensor and that 

grad T, = gradOT, = 0 
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at the point 0. Therefore in this case equations (1 1) and (13) are the more accu- 
rate ones. This type of situation occurs in the motion of a body down the axis 
of symmetry of a circular cylinder or mid-way between two parallel plates. In  
these cases, the accuracy of the form of the resultant force is independent of the 
properties of symmetry of 8,. 

We consider now the case when the boundary is completely asymmetric and 
we shall assume that 8, possesses three perpendicular planes of symmetry inter- 
secting at a point 0 within itself. The normals to the planes of symmetry will 
be taken to be the co-ordinate axes Ox,, Ox, and Ox, and it will also be assumed 
that 8, is moving parallel to Ox,. The affix zero will be employed to denote the 
co-ordinates of the arbitrary Po on S,. If the Stokes problem for X, in unbounded 
fluid is formulated as an integral equation, it follows from the definition of T, 
and the symmetry properties of 8, that the following relationships are valid: 

~F(x : , x ; , x : )  = -fF( - $ , X ; , X $ )  = - J ! ( x ; ,  -Z; ,X; )  = ~ F ( x : , x ; ,  -x;), (16) I f:(x;,+g) =fi"(-x:,x;,4) =fi"(4, --x; ,4,  

f.?(x:,4L49 = -f;"(x:,x;,.;) =fax;, - x : , 4 .  

It follows immediately from equations (16) that 
r 

and hence that the second terms of equation (15) are identically zero. The first 
set of terms in equation (15), however, are non-zero and thus, neglecting terms 
of O(e3), f will be a superposition of the solution of equation (9) and the solutions 
f* of equations of the form 

r 

where i, is the unit vector parallel to Ox,. It is sufficient to examine the case 
s = 1 and r = 1 or 2; the other cases may be treated similarly. Considering first 
r = 1, it follows from equation (17) and the symmetry conditions that 

fi*c.:>.;,.:) =ji*c-.;,.;,x;, = -fi*(d, -x;,x;), 

fax;, x;, 4) = -fa - xY, 4,x;)  = fax:, - 4,&)> 
f;(x:, x;, x;) = f3*( - x:, x;, x;) = -f$(x!, - x;, x;,. 

It follows from equations (18) and (19) that all solutions of equation (17) satisfy 

the condition ssLf *dX = 0 and hence that the error in equation (10) is O ( 8 ) .  

Hence for the two particular cases considered here equations (11) and (13) 
are correct to O(e3) .  The integral-equation approach thus gives both a simple 
method for deriving equation (10) and a method for verifying its accuracy. 

19 Fluid Mech. 24 
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3. The motion of two bodies 
The integral-equation approach lends itself very readily to the formulation 

of Stokes flow problems in the region exterior to two (or more) bodies. This 
type of problem has been examined by several authors (Smoluchowski 1911, 
Burgers 1942, Kynch 1959, Brenner 1964). The bodies w-ill be denoted by S, 
and S, and the appropriate generalization of equation ( 5 )  is 

where f, and f, are the values off on S, and S,. It will be assumed that both 8, 
and S, have the same characteristic dimension c, and that 1 denotes the distance 
between some point 0 of S, and some point 0' of S,. The velocities of S, and S, 
will be denoted by q, and q, and the unit vector parallel to 00' will be denoted 
by i. 

On neglecting terms of O(c2\Z2) it follows that the problem reduces to  that of 
obtaining the solution of the equations 

where F, and F, are the forces on S, and S,, respectively. Thus, if q3 and q, are 
given and the Stokes resistance dyadics 9, and 9, of S, and S,, respectively, are 
known, two equations may be obtained for F, and F,. These latter equations 
may be solved and a result obtained by Brenner (1964) will then be re-derived. 
In  problems involving settling particles, however, the forces F, and F, are known 
and the problem is to determine q, and q,. If u, denotes the settling velocity in 
a given force field of 8, in an unbounded medium, then F, in equation (21) will 
be defined by F, = - 677~cu,. a,, and a similar relation holds between F,, 9, 
and u4. Hence from equation (21) 

3 c  1 
41 

q , - - - [ ~ ~ . 9 ~ + ( ~ ~ . 9 ~ ) . i i ]  = -__ 

f, is, however, the solution of equation ( 2 2 )  with the left-hand side equal to the 
settling velocity appropriate to the force F, (i.e. u,). Thus 

3 c  
41 

q, = U , + - - [ U , . ~ , , +  ( ~ , . 9 ~ ) . i i ] .  

Equation (33) is a generalization of a result obtained by Kynch and Brenner by 
somewhat more elaborate calculation. 
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